资源类型

期刊论文 303

会议视频 1

年份

2023 14

2022 19

2021 23

2020 18

2019 27

2018 5

2017 12

2016 11

2015 12

2014 22

2013 12

2012 16

2011 13

2010 21

2009 17

2008 12

2007 13

2006 5

2005 9

2004 1

展开 ︾

关键词

有限元 7

有限元分析 5

有限元法 5

ANSYS 3

裂缝 3

三维有限元 2

可拓学 2

应力 2

有限元模型 2

裂缝转向 2

ACP1000 1

AFHW模型 1

ARMA模型 1

CFRP索斜拉桥 1

Cu(In 1

FHW 1

Ga)Se2 1

Halbach阵列 1

HuMiX 1

展开 ︾

检索范围:

排序: 展示方式:

Computational model generation and RVE design of self-healing concrete

Md. Shahriar QUAYUM,Xiaoying ZHUANG,Timon RABCZUK

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 383-396 doi: 10.1007/s11709-015-0320-z

摘要: Computational homogenization is a versatile tool that can extract effective properties of heterogeneous or composite material through averaging technique. Self-healing concrete (SHC) is a heterogeneous material which has different constituents as cement matrix, sand and healing agent carrying capsules. Computational homogenization tool is applied in this paper to evaluate the effective properties of self-healing concrete. With this technique, macro and micro scales are bridged together which forms the basis for multi-scale modeling. Representative volume element (RVE) is a small (microscopic) cell which contains all the microphases of the microstructure. This paper presents a technique for RVE design of SHC and shows the influence of volume fractions of different constituents, RVE size and mesh uniformity on the homogenization results.

关键词: homogenization     self-healing concrete (SHC)     representative volume element     multiscale modelling    

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 304-315 doi: 10.1007/s11709-013-0213-y

摘要: In the present paper, a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies. The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level, and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level. The link between scales is made using a computational homogenization method. The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element, kinematic conditions, contact constraints, and elimination of overlap satisfied for every particle. The method could be used in a variety of problems that can be represented using granular media.

关键词: homogenization     two-scale     representative volume element     compaction     granular assembly     finite element method    

混凝土中碱硅反应效应的多尺度均质化分析 Article

Roozbeh Rezakhani, Mohammed Alnaggar, Gianluca Cusatis

《工程(英文)》 2019年 第5卷 第6期   页码 1139-1154 doi: 10.1016/j.eng.2019.02.007

摘要:

碱硅反应(ASR)是混凝土结构(如桥梁和水坝)在长期的高湿度环境下发生的主要劣化机制之一。ASR是骨料中活性硅成分与水泥浆中碱金属离子之间发生的一种化学反应。这种化学反应会产生ASR凝胶,该凝胶吸水后膨胀,造成混凝土损坏和开裂,最终导致混凝土力学性能下降。本研究基于晶格离散粒子模型(LDPM),研究了混凝土的ASR损伤。LDPM可在粗骨料尺度上模拟混凝土,它是一种中尺度力学模型。作者已经成功地利用LDPM框架对ASR建模,并且通过实验数据对所得模型ASR-LDPM进行了校准和验证。本研究将ASR-LDPM用作中尺度模型,并采用最新开发的多尺度均质化框架来模拟ASR的宏观尺度效应。作者首先分析了由ASR-LDPM模拟的混凝土代表性体积元(RVE)在拉伸和压缩两种情况下的均质化行为,并研究了ASR对混凝土有效力学性能的影响。接下来,作者利用已开发的均质化框架再现了关于混凝土棱柱体自由体积膨胀的实验数据。最后,作者通过中尺度模型和所提出的多尺度方法,评估了压缩和四点弯曲梁中棱柱体的强度退化现象,以分析后者的准确性和计算效率。在所有数值分析中,作者考虑了具有不同内部粒子划分的RVE大小,以探讨它们对均质化响应的影响。

关键词: 多尺度均质化     代表性体积元     碱硅反应     晶格离散粒子模型    

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 746-755 doi: 10.1007/s11783-013-0551-y

摘要: This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established to describe and examine the routes and intensities of water, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) for a representative hypothetical city (RH city) in China, which is a devised and scaled city using statistical characteristics of urban circumstances at the national level. It is estimated that the annual flux of water, COD, TN and TP through the urban drainage system in 2010 was 55.1 million m , 16037.3 t, 1649.5 t and 209.7 t, respectively. The effluent of wastewater treatment plant (WWTP) was identified as the most important pathway for pollutant emissions, which contributed approximately 60% of COD, 65% of TN and 50% of TP to receiving water. During the wastewater treatment process, 1.0 million m , 7042.5 t, 584.2 t and 161.4 t of the four studied substances had been transmitted into sludge, meanwhile 3813.0 t of COD and 394.0 t of TN were converted and emitted to the atmosphere. Compared with the representative hypothetical city of 2000, urban population and the area of urban built districts had expanded by approximately 90% and 80% respectively during the decade, resulting in a more than threefold increase in the input of substances into the urban drainage system. Thanks to the development of urban drainage systems, the total loads of the city were maintained at a similar level.

关键词: substance flow analysis (SFA)     urban drainage system     representative hypothetical city (RH city)     water pollution control    

Assessment of liver volume variation to evaluate liver function

null

《医学前沿(英文)》 2012年 第6卷 第4期   页码 421-427 doi: 10.1007/s11684-012-0223-5

摘要:

In order to assess the value of liver volumetry in cirrhosis and acute liver failure (ALF) patients, we explored the correlation between hepatic volume and severity of the hepatic diseases. The clinical data of 48 cirrhosis patients with 60 normal controls and 39 ALF patients were collected. Computed tomography-derived liver volume (CTLV) and body surface area (BSA) of normal controls were calculated to get a regression formula for standard liver volume (SLV) and BSA. Then CTLV and SLV of all patients were calculated and grouped by Child-Turcotte-Pugh classification for cirrhosis patients and assigned according to prognosis of ALF patients for further comparison. It turned out that the mean liver volume of the control group was 1 058±337 cm3. SLV was correlated with BSA according to the regression formula. The hepatic volume of cirrhosis patients in Child A, B level was not reduced, but in Child C level it was significantly reduced with the lowest liver volume index (CTLV/SLV). Likewise, in the death group of ALF patients, the volume index was significantly lower than that of the survival group. Based on volumetric study, we proposed an ROC (receiver operating characteristic) analysis to predict the prognosis of ALF patients that CTLV/SLV<83.9% indicates a poor prognosis. In conclusion, the CTLV/SLV ratio, which reflects liver volume variations, correlates well with the liver function and progression of cirrhosis and ALF. It is also a very useful marker for predicting the prognosis of ALF.

关键词: liver volume variation     cirrhosis     acute liver failure (ALF)    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

REGIONAL ASSESSMENT OF SOIL NITROGEN MINERALIZATION IN DIVERSE CROPLAND OF A REPRESENTATIVE INTENSIVE

《农业科学与工程前沿(英文)》 2023年 第10卷 第4期   页码 530-540 doi: 10.15302/J-FASE-2023515

摘要:

Soil nitrogen mineralization (Nmin) is a key process that converts organic N into mineral N that controls soil N availability to plants. However, regional assessments of soil Nmin in cropland and its affecting factors are lacking, especially in relation to variation in elevation. In this study, a 4-week incubation experiment was implemented to measure net soil Nmin rate, gross nitrification (Nit) rate and corresponding soil abiotic properties in five field soils (A–C, maize; D, flue-cured tobacco; and E, vegetables; with elevation decreasing from A to E) from different altitudes in a typical intensive agricultural area in Dali City, Yunnan Province, China. The results showed that soil Nmin rate ranged from 0.10 to 0.17 mg·kg−1·d−1 N, with the highest value observed in field E, followed by fields D, C, B, and A, which indicated that soil Nmin and Nit rates varied between fields, decreasing with elevation. The soil Nit rate ranged from 434.2 to 827.1 µg·kg−1·h−1 N, with the highest value determined in field D, followed by those in fields E, C, B, and A. The rates of soil Nmin and Nit were positively correlated with several key soil parameters, including total soil N, dissolved organic carbon and dissolved inorganic N across all fields, which indicated that soil variables regulated soil Nmin and Nit in cropland fields. In addition, a strong positive relationship was observed between soil Nmin and Nit. These findings provide a greater understanding of the response of soil Nmin among cropland fields related to spatial variation. It is suggested that the soil Nmin from cropland should be considered in the evaluation of the N transformations at the regional scale.

关键词: cropland     gross nitrification rate     regulatory factors     soil nitrogen mineralization     spatial variation    

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 296-305 doi: 10.1007/s11705-018-1701-3

摘要: Gas membrane separation process is highly unpredictable due to interacting non-ideal factors, such as composition/pressure-dependent permeabilities and real gas behavior. Although molecular dynamic (MD) simulation can mimic those complex effects, it cannot precisely predict bulk properties due to scale limitations of calculation algorithm. This work proposes a method for modeling a membrane separation process for volatile organic compounds by combining the MD simulation with the free volume theory. This method can avoid the scale-up problems of the MD method and accurately simulate the performance of membranes. Small scale MD simulation and pure gas permeation data are employed to correlate pressure-irrelevant parameters for the free volume theory; by this approach, the microscopic effects can be directly linked to bulk properties (non-ideal permeability), instead of being fitted by a statistical approach. A lab-scale hollow fiber membrane module was prepared for the model validation and evaluation. The comparison of model predictions with experimental results shows that the deviations of product purity are reduced from 10% to less than 1%, and the deviations of the permeate and residue flow rates are significantly reduced from 40% to 4%, indicating the reliability of the model. The proposed method provides an efficient tool for process engineering to simulate the membrane recovery process.

关键词: membrane vapor separation     membrane process modeling     process engineering     free volume theory     volatile organic compound    

increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative

Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ

《能源前沿(英文)》 2017年 第11卷 第2期   页码 155-167 doi: 10.1007/s11708-017-0469-3

摘要: This paper presents the selected power quality (PQ) indicia of a wind generator and a photovoltaic installation considered to be the representative of medium voltage and low voltage distribution grids. The analysis of measured values suggests that the decrease in PQ is a case of specific combination of distributed generation, grid parameters and load behaviour. Modern generators have a limited impact on PQ. On the other hand, fluctuations in power generation are regarded as an emerging PQ indicator. The growing number of distributed renewable installations causes stochastic, variable, and hardly predictable power flows in the distribution grid. The nature of fluctuations in wind and solar generation is different. In both cases, new indexes for the quantification of fluctuations are needed and are yet not standardised. Proper assessment of these fluctuations enables definition of useful fluctuation limits and rules for optimal storage system integration.

关键词: power quality     harmonics     sags     photovoltaic(PV) system     doubly feed induction generator (DFIG)     inverters    

V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1578-8

摘要:

● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm).

关键词: SERS     V-shaped     AAO     Microplastic     Atmospheric aerosol    

Modeling limit force capacities of high force to volume lead extrusion dampers

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 609-622 doi: 10.1007/s11709-021-0724-x

摘要: Lead extrusion dampers are supplemental energy-dissipation devices that are used to mitigate seismic structural damage. Small volumetric sizes and high force capacities define high-force-to-volume (HF2V) devices, which can absorb significant response energy without sacrificial damage. However, the design of such devices for specific force capacities has proven difficult based on the complexities of their internal reaction mechanisms, leading to the adoption of empirical approaches. This study developed upper- and lower-bound force capacity estimates from analytical mechanics based on direct and indirect metal extrusion for guiding design. The derived equations are strictly functions of HF2V device geometric parameters, lead material properties, and extrusion mechanics. The upper-bound estimates from direct and indirect extrusion are denoted as (FUB,1, FUB,2) and (FUB,3, FUB,4), respectively, and the lower-bound estimates are denoted as (FLB, FLB,1) based on the combination of extrusion and friction forces. The proposed models were validated by comparing the predicted bounds to experimental force capacity data from 15 experimental HF2V device tests. The experimental device forces all lie above the lower-bound estimates (FLB, FLB,1) and below the upper-bound estimates (FUB,1, FUB,2, FUB,4). Overall, the (FLB, FUB,2) pair provides wider bounds and the (FLB,1, FUB,4/FUB,1) pair provides narrower bounds. The (FLB,1, FUB,1) pair has a mean lower-bound gap of 36%, meaning the lower bound was 74% of the actual device force on average. The mean upper-bound gap was 33%. The bulge area and cylinder diameter of HF2V devices are key parameters affecting device forces. These relatively tight bounds provide useful mechanics-based predictive design guides for ensuring that device forces are within the targeted design range after manufacturing.

关键词: extrusion     lead dampers     upper and lower bound     analytical modelling     limit force    

Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue

Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 288-303 doi: 10.1007/s11705-019-1875-3

摘要: A synthetic mixture of real waste packaging plastics representative of the residue from a material recovery facility (plasmix) was submitted to thermal and catalytic pyrolysis. Preliminary thermogravimetry experiments coupled with Fourier transform infrared spectroscopy were performed to evaluate the effects of the catalysts on the polymers’ degradation temperatures and to determine the main compounds produced during pyrolysis. The thermal and catalytic experiments were conducted at 370°C, 450°C and 650°C using a bench scale reactor. The oil, gas, and char yields were analyzed and the compositions of the reaction products were compared. The primary aim of this study was to understand the effects of zeolitic hydrogen ultra stable zeolite Y (HUSY) and hydrogen zeolite socony mobil-5 (HZSM5) catalysts with high silica content on the pyrolysis process and the products’ quality. Thermogravimetry showed that HUSY significantly reduces the degradation temperature of all the polymers—particularly the polyolefines. HZSM5 had a significant effect on the degradation of polyethylene due to its smaller pore size. Mass balance showed that oil is always the main product of pyrolysis, regardless of the process conditions. However, all pyrolysis runs performed at 370°C were incomplete. The use of either zeolites resulted in a decrease in the heavy oil fraction and the prevention of wax formation. HUSY has the best performance in terms of the total monoaromatic yield (29 wt-% at 450°C), while HZSM5 promoted the production of gases (41 wt-% at 650°C). Plasmix is a potential input material for pyrolysis that is positively affected by the presence of the two tested zeolites. A more effective separation of polyethylene terephthalate during the selection process could lead to higher quality pyrolysis products.

关键词: packaging plastics waste     plasmix     pyrolysis     zeolite catalyst     degradation temperature    

Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV

《能源前沿(英文)》 2022年 第16卷 第6期   页码 973-987 doi: 10.1007/s11708-021-0762-z

摘要: A fan-stirred combustion chamber is deve-loped for spherically expanding flames, with P and T up to 10 bar and 473 K, respectively. Turbulence characteristics are estimated using particle image velocimetry (PIV) at different initial pressures (P = 0.5–5 bar), fan frequencies (ω = 0–2000 r/min), and impeller diameters (D = 100 and 114 mm). The flame propagation of methanol/air is investigated at different turbulence intensities (u′=0–1.77 m/s) and equivalence ratios (φ = 0.7–1.5). The results show that u′ is independent of P and proportional to ω, which can be up to 3.5 m/s at 2000 r/min. LT is independent of P and performs a power regression with ω approximately. The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to –5/3 law at a high ReT. Compared to laminar expanding flames, the morpho-logy of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity, consistent with the decline of the Taylor scale and the Kolmogorov scale. The determined SL in the present study is in good agreement with that of previous literature. The SL and ST of methanol/air have a non-monotonic trend with φ while peak ST is shifted to the richer side compared to SL. This indicates that the newly built turbulent combustion chamber is reliable for further experimental study.

关键词: fan-stirred combustion chamber     turbulence characteristics     particle image velocimetry (PIV)     methanol     turbulent expanding flames    

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 60-79 doi: 10.1007/s11708-009-0011-3

摘要: Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

关键词: aerogel     fiber     particle scattering     radiative properties     soot     surface roughness    

selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume

Yongtao LI, Christina L. MCCARTY, Ed J. GEORGE

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 417-425 doi: 10.1007/s11783-011-0310-x

摘要: A rapid, sensitive, and cost-effective analytical method was developed for the analysis of selected semi-volatile organic compounds in water. The method used an automated online solid-phase extraction technique coupled with programmed-temperature vaporization large-volume injection gas chromatography/mass spectrometry. The water samples were extracted by using a fully automated mobile rack system based on x-y-z robotic techniques using syringes and disposable 96-well extraction plates. The method was validated for the analysis of 30 semi-volatile analytes in drinking water, groundwater, and surface water. For a sample volume of 10 mL, the linear calibrations ranged from 0.01 or 0.05 to 2.5μg·L , and the method detection limits were less than 0.1μg·L . For the reagent water samples fortified at 1.0μg·L and 2.0?μg·L , the obtained mean absolute recoveries were 70%–130% with relative standard deviations of less than 20% for most analytes. For the drinking water, groundwater, and surface water samples fortified at 1.0μg·L , the obtained mean absolute recoveries were 50%–130% with relative standard deviations of less than 20% for most analytes. The new method demonstrated three advantages: 1) no manipulation except the fortification of surrogate standards prior to extraction; 2) significant cost reduction associated with sample collection, shipping, storage, and preparation; and 3) reduced exposure to hazardous solvents and other chemicals. As a result, this new automated method can be used as an effective approach for screening and/or compliance monitoring of selected semi-volatile organic compounds in water.

关键词: automated solid-phase extraction     programmed-temperature vaporization     large-volume injection     gas chromatography/mass spectrometry     semi-volatile organic compounds     water analysis    

标题 作者 时间 类型 操作

Computational model generation and RVE design of self-healing concrete

Md. Shahriar QUAYUM,Xiaoying ZHUANG,Timon RABCZUK

期刊论文

Two-scale modeling of granular materials: A FEM-FEM approach

Yun-Zhu CAI, Yu-Ching WU

期刊论文

混凝土中碱硅反应效应的多尺度均质化分析

Roozbeh Rezakhani, Mohammed Alnaggar, Gianluca Cusatis

期刊论文

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

期刊论文

Assessment of liver volume variation to evaluate liver function

null

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文

REGIONAL ASSESSMENT OF SOIL NITROGEN MINERALIZATION IN DIVERSE CROPLAND OF A REPRESENTATIVE INTENSIVE

期刊论文

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

期刊论文

increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative

Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ

期刊论文

V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics

期刊论文

Modeling limit force capacities of high force to volume lead extrusion dampers

期刊论文

Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue

Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti

期刊论文

Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV

期刊论文

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

期刊论文

selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume

Yongtao LI, Christina L. MCCARTY, Ed J. GEORGE

期刊论文